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This paper investigates the use of a high-speed computer to simulate the unwinding 
of DNA. A Langevin equation of motion for the well-known bead-spring statistical 
macromolecule is written in difference form. An appropriate set of boundary conditions 
is developed to simulate a helical molecule and the resulting set of rules for the motion 
of the chain elements is used to produce the strand unwinding. The unwinding appears 
to proceed via initial end-unwinding followed by progressive unwinding inward. The 
latter process appears to occur by diffusion of twist outward from the central portion 
of the macromolecule. A computer simulation, using the Langevin equation, of linear 
tensile relaxation is compared with the appropriate analytical solution via the Rouse 
treatment of polymer dynamics, good agreement being obtained. The helical results 
are compared both with tensile relaxation and with Crothers' (1964) analytical 
treatment of the unwinding problem, which is analogous to the well-known temperature 
diffusion problem. The tensile results and Crothers' results are identical in form, and 
agree quantitatively remarkably closely with the computer-simulated helical unwinding, 
although the helical unwinding is somewhat slower. 

KEY W O R D S :  DNA; helical molecule; computer simulation; biopolymers; Langevin 
equation; bead-spring macromolecule; polymer dynamics; unwinding of DNA; tensile 
relaxation; Rouse-Bueche model. 

1. I N T R O D U C T I O N  

There have been a number  o f  a t tempts  at a theoretical  unders tanding of  the unwinding 

of  D N A .  (1-4) The  models  all assume a specific to rque  acting in conjunct ion  with 

a diffusion process to al low the unwinding  to take place. They all show that  the 
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times involved for a torque-driven D N A  molecule are within the range of those 
observed in cellular duplication. All models are one-dimensional and have simple 
boundary conditions for the ends as well as the central portions of  the DNA. 
Furthermore they involve a simple exponential relaxation process. Clearly to represent 
a complex helical model such as D N A  by simplified one-dimensional examples is 
not a p r i o r i  justified. In reality one would have to solve a 6N-dimensional problem, 
3N coordinates and 3N momenta,  where each coordinate is that of  a center of  mass 
representing a nucleotide sugar combination. T h e  problem is made difficult by the 
fact that one is dealing with helical geometry. Furthermore two strands are involved; 
the two strands cannot pass through each other, i.e., each strand appears to the 
other as an excluded volume, an infinite potential into which it cannot pass. One 
purpose of  this paper is to investigate a model which includes more detailed considera- 
tions of  the unwinding process and to compare the results to a one-dimensional 
theory. 

The model chosen is the Rouse~5)-Bueche ~6~ bead-spring model, that is, N elastic 
elements (springs) connecting N + 1 beads. Only one strand is considered explicitly, 
the other strand being represented as an excluded volume. The model set up here 
is a statistical model with the overall geometry of DNA. We will be concerned with 
the relaxation properties of  this model. The analytical differential equation serving 
as a diffusion equation for an element of  the chain is solved through a difference 
equation. In Section 2 we discuss the use of  the Langevin equation. Section 3 will 
discuss the simulation of tensile relaxation of the end-to-end distance projected 
along the x axis for a series of  chains. The extension of this method to the unwinding 
of D N A  is carried out in Section 4, followed by a discussion of the results in Section 5. 

2. T H E  L A N G E V I N  E Q U A T I O N  

The diffusion equation for an element of  a macromolecule in solution has been 
derived ~7) from consideration of the forces on that element. For a free-draining 
polymer, 

~ l n T  
2~ = - - D  ~xj cr(--xj_l + 2x~. - -  xj+l), 0 < j < N 

h l n W  
eo = - - D  eXo ~(x0 - -  x 0 ,  j = 0 (1) 

8 1 n T  
2N = - - D  - -  cr(xN - -  XX-1) ,  j = N 

OXN 

where 2j is the ensemble-averaged velocity of  the j th  bead a t  position x~, y j ,  zj ; 
W(x0 "'" ZN) is the probability density of  bead j at x j ,  and similarly for yj and zj ; 
and D = K T / p  and a = 3 K T / b 2 p ,  where b is a length parameter, p is the translational 
frictional coefficient of  a single bead, T is the temperature, and K is the Boltzmann 
constant. This equation is a first-order differential equation for the motion of bead j 
which is harmonically bound to its nearest neighbors and which is acted upon by 
frictional and Brownian forces. I t  is formally equivalent to a modified Langevin 
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equation (inertial forces ignored), as seen by rewriting, calling A( t )  the fluctuating 
force due to Brownian motion, 

2j = A( t )  - -  cr(--xy_l -k 2x j  - -  xj+l), 0 < j ,< N (2) 

For use on the computer the difference form of  this equation can be written: 

[x~(t %- A t) - -  xj(t)] 
A t  

[x0(t -k A t )  - -  Xo(t)] 
A t  

[XN(t -[- A t )  - -  xN(t)] 
l i t  

= A ( t ) - - a ( - - x j _ a ( t ) q - 2 x ~ ( t ) - - x ~ + l ( t ) )  

= A( t )  - -  a(Xo(t) - -  x l ( t ) )  

= A( t )  - -  a(XN(t) - -  XN--I(t)) 

(3) 

We take A t  = 1, so that one computer cycle will correspond to a unit in t, the time; 
t now becomes a discrete integer variable. Then 

x j ( t  -~- 1) = x~(t) -t- A ( t )  - -  a ( - -x~_l ( t )  + 2x~(t) - -  xj+l(t))  (4) 

The initial coordinates are given on data cards, a random number representing A( t )  
is generated, and a new position is computed for each successive bead in any desired 
coordinate. Diffusion in the y and z directions can be handled simultaneously in 
an identical manner. 

The magnitude of the random numbers is chosen as follows. Since the A( t )  
term of Eq. (4) represents Brownian motion, consideration of the translational 
diffusion constant of  a single free bead, 5, is necessary. For one-dimensional motion 

is given by the Einstein relation, 

= v ( A x ~ } / 2  (5) 

where v is the number of  displacements of the center of  mass per unit time, and 
A x  is the magnitude of each displacement along the x axis. We have chosen v to be 
unity, so that 

A x  = A(t)  

From the definition of A x  2, 

o 

( A x  2) = <A(t)~) = ~ x2p(x) dx p(x)  & (6) 
. /  

where a is an arbitrarily chosen upper limit to the range of displacements and p(x )  
is the probability of  finding a displacement at x. We take p ( x )  to be unity, i.e., A( t )  is 
an evenly distributed random number. Since u = 1 (one impulse per computer cycle), 

= a~/6 (7) 

From the Einstein model fo r  bead motion, another equation can be written for S: 

= kT/p  
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We make use of  one other relation, that for e as defined above, getting 

b ~ = 3~1~ = a2t2cr (8) 

where b is the equilibrium r.m.s, distance between beads. Thus or, having the dimension 
of reciprocal time, is determined f rom the above relations. 

3. T E N S I L E  R E L A X A T I O N  

To verify that the computer treatment was giving a representation of the analytical 
equation, simulation of tensile relaxation for a series of  polymers was carried out. 
31-, 61-, 81-, 121-, and 241-bead models were used with the following internally 
consistent parameters: 

= 0.320, b = 10, a = 4-8 

To derive an expression for the average end-to-end projection along the x axis 
of  a linear polymer we make use of  a model (v) in which equal and opposite forces 
of  magnitude equal to f are applied to the ends of  the chain. Then the average 
extension along the x axis between two elements of  the chain, j and l, is 

N 

<xj - -  x~) = ~ (Qjk~,~ - -  Q~k3,~) (9) 
k = 0  

where 

f 2.  ~ d~o "" dpN 

S~ is the average of the normal coordinate seT~, Q~'k is an element of the normal- 
coordinate transformation matrix such that x = Qg, etc. The time-dependent 
solution for S~ is given (v) (with an incorrect sign changed) as 

where 

E~ = exp(--c;Akt) f (J/p) e~ exp((rAJ) d t +  Ck exp( - -eAJ)  (10) 

C~ is a constant of  integration, and hk are the eigenvalues of  the free-draining chain, 
,~ = rr2k2/N 2. The problem chosen here requires that at t = 0 the chain is linearly 
extended; after t = 0 the chain relaxes to its equilibrium configuration. For 
--oo < t < 0 assume a constant force f ;  for t > 0, f = 0. Then for t < 0, 

t 

3~ = exp( - -~A~t ) ( f /p )  % f exp(~)tkt') dt" 
- - e t a  

= f%/pc;,~ k (11) 
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For t > O , f = O ,  
3~ = Ck exp(--~A,J) (12) 

For t < 0 from Eq. (11) the steady-state value o fS~  i s f % / p a A k .  At t = 0, (11) and 
(12) must be equal, giving 

Ck = fek/p~)tk 

Then for t > 0, 

The mean extension is 

37~ = (%f /peAk)  exp(--~rAkt) (13) 

N 

<XN - -  Xo> = ~ (QN~Sk - -  Qo;~S~) 
k=O 

Since Qm~ - Qol~ = (8 /N)  1/2 for k odd and vanishes for k even, eT~ = (8 /Ny /2 ,  and 

Then let 

so that 

N 

(X N - - X o ) =  (Sf/Nffp) 2 A~-I exp(--aA~ t) ( 1 4 )  
k odd 

f . =  (Xu  - -  Xo)]t=o 
N 

8(XN Xo)]t=o 
N 

~XN -- XO) = Z k-2 exp(--~Akt) (15) 
7/.2 

k odd 

Of particular importance are the relaxation times 

-r~' = (aAk) -1 = N2/a~r2k ~ (16) 

It can be shown likewise that for the mean square end-to-end distance the relaxation 
times ~-k' are rt~ = (2aAk) -1. 

A plot of  Eq. (15) and the results of a computer simulation for 121 beads is 
seen in Fig. 1. Table I is a comparison of  theoretical and computer results for the 
principal relaxation time for a series of chain lengths; the computer relaxation times 
were determined from the slopes of semilog plots, ignoring the initial transient. 

The linear tensile relaxation program makes use of Eq. (4) to generate new 
coordinates. A( t )  is produced through use of the random number generation routine. 
This computes random real numbers between 0 and 1.0 (which can be transformed 
to any suitable range) by a technique (9) which will produce 239 terms before repeating. 
Specifically, in FORTRAN notation, an odd integer number with nine or less digits 
called ~x is used to compute IY, 

~Y = Ix �9 65539 

IfIY is less than zero it is augmented, 

I Y = I Y + 2 1 4 7 4 8 3 6 4 7 + 1  
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Fig. 1. Comparison of theoretical (line) and computer simulation (points) of linear tensile relaxation 
of the x projection of the mean end-to-end distance of a 121-bead chain with ~r = 0.32. ~'z" (theory) 
equals 4760 cycles; r from slope of best line through the points equals 5060. Points represent an 
average over two runs. b = 10. 

I t  is t h e n  set  e q u a l  to  YFL, in  o r d e r  to  c h a n g e  to  f l o a t i n g - p o i n t  m o d e ,  

YFL ~ IY 

a n d  the  r a n d o m  n u m b e r  is f o r m e d ,  

YFL = YFL * 0 .4656613E - -  9 

T h e  n e w  va lue  o f  Ix is t he  p r e c e d i n g  va lue  o f  TY. 

Table I. Observed and Theoretically Expected Tensile Relaxation Times ~ 

N + 1 Computer ~- S Theory ~z" 

< X N  - -  Xo> 

<(XN - Xo) ~) 

31 273 43 304 
61 1,204 86 1,178 

121 5,060 148 4,635 
241 16,600 1500 18,390 

Theory rz 

31 141 11 152 
61 560 39 589 

121 2120 200 2317 
241 7000 2100 9195 

a The computer ~- is determined from the slope of the average of semilog plots of the output (see Fig. 1). 
S is the standard deviation of ~-. The theoretical 7z is the value of the slowest mode; see text. For 
all runs a = 0.320; b = 10 units. <XN -- Xo) and <(XN -- )Co) 2) are the mean squared distances 
of the x component, respectively. N + 1 is the number of beads. 
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The individual tensile programs took approximately one minute to generate 
10,000 complete cycles. Additional constraints were included to prevent any con- 
secutive pair of beads from diffusing more than 1600 units apart; these constraints 
are discussed more fully in connection with the helical problem considered below. 

4. C O M P U T E R  T R E A T M E N T  O F  T H E  H E L I C A L  M O D E L  O F  D N A  

The present section considers the problem of representation of the Watson-Crick 
structure of DNA by a suitable model which can be treated on the computer. The 
model chosen for computer simulation is a simplified helix. Since the presence of 
two helices would greatly complicate both the computer program and the calculations, 
one helix is replaced by a stationary cylindrical boundary of infinite length. Wrapped 
around this in helical fashion is a bead-spring chain representing one strand of DNA 
(see Fig. 2). The boundary acts as an infinite potential to the chain, that is, a 
restricted area simulating the excluded volume presented by the other strand. The 
circular cylindrical boundary first used is later replaced by a square cylindrical 
boundary for practical reasons. Since there are no cross-terms connecting the motion 
in the z direction with those in the x and y directions, the z-axis motion reduces 
to that of an unrestricted chain, which can be solved analytically. (7) Further, since 
the cylinder is infinite in the z direction, z-axis motion cannot lead to unwinding. 
For  these reasons z-axis motion is ignored in the subsequent work. 

The model thus reduces to motion of the chain throughout the xy  plane, except 
for the interior of a circle or a square centered at the origin, and with the z-axis 
motion ignored. The actual movement of the bead-spring model is governed by a 
difference-equation representation of the Rouse-Bueche model of a free-draining 

v 

I 

X 

Fig. 2. Schematic representation of a section of the bead-spring model 
wrapped around an excluded-volume cylinder representing the complementary strand. 
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polymer as discussed above. (The treatment of base-base interactions, both stacking 
and hydrogen bonding, is not considered in detail in this paper. The present model 
is similar to D N A  in which the base-base interactions have been disrupted, such 
as an alkali-treated sample, c1~ The difference equation (4) is successively applied 
to each bead in the chain, starting with bead zero and ending with bead iV. Thus 
in one cycle a new set of  coordinates is generated for the entire chain. The initial 
set of  coordinates is entered on data cards. Forty units was chosen as the diameter 
of  the cylinder (or as the length of the side in the case of  the square), and a distance 
of 16 units, equal to the value of b, was chosen as the initial separation between 
successive beads. Runs were made for chains of  31, 61, 81, and 121 beads. The 
quantity computed was the number of  winds, defined as the sum of the angles, 
with respect to the cylinder axis, between successive pairs of  beads divided by 2~r. 
The number of  winds was computed for those sections of  the chain corresponding 
to each initial turn, as well as for the chain as a whole, at the end of each hundred 
computer cycles. The actual time taken was of the order of  fifteen minutes for 
40,000 cycles for the 121-bead chain. 

When a bead interacts with the excluded volume a special operation must be 
performed on that chain element. Consider a reflecting barrier. I f  1 (Fig. 3) represents 
the old coordinates and 2 the new position which is inside the excluded volume, 
then 3 would represent the coordinates of  the bead reflected through a mirror angle. 
The coordinates of  the new position are determined both by the position of the bead 
in the excluded volume 2 and also by the position of the previous coordinate 1. 
That  is, in the case above one would determine coordinate pair 3 by the equations 

x8 = x2, Y8 = 40 --Y2 (17) 

However the move of 1' -+  2 would be reflected to the new position 3' given by 

x~' = 40 --  x2, Ys' = Y2 (18) 

Thus a test is needed to determine how the bead entered the excluded volume if 

I u 

% 
/_ _ _ ~ 3  I 

2 | 

~-- 20---~ 

Fig. 3. Schematic representat ion of  the interaction of  a bead with the reflecting barrier. Two 
possible entrances 1 and 1" to the same resultant posi t ion 2 have the final positions 3 and 3", 

respectively. 
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reflecting walls are to be reproduced. The test chosen was simply to determine the y 
intercept on the line x = 20 or x = --20, i.e., extensions of two of the sides of 
the square. In Fig. 4 the move A C  reflects to C' and the move A B  reflects to B' by 
virtue of the fact that points 1 and 2 have y intersections on the line x = 20 greater 
and less than 20 respectively. 

The y intersection, Y', on the line x = 20 is given by the equation 

Y' = YA + (YB -- yA)(20 -- XA) (19) 
XB - -  XA 

Thus to determine the new coordinate one tests the y intersection of particles which 
penetrated the barrier with initial x values greater than 20 or less than --20. The 
value of this intersection determines the operation performed on the particle to 
reflect it from the barrier. Particles whose y values are initially greater than +20  
or less than --20, but with x values not greater than + 2 0  or less than --20, and 
which penetrated the barrier are reflected without the intercept test. These procedures 
are seen in the FORTRAN program (Fig. 5). 

When the distance between two successive beads becomes greater than 40 units 
(the length of a side of  the square boundary) on or near the boundary, the spring 
connecting the two beads may pass through the excluded volume. This creates an 
artifact that we must exclude. The remedy is to measure the distance between 
successive beads and return the entire chain to its coordinates of the previous cycle 
when any spring length becomes greater than 39 units, thus guaranteeing that 
"passing through" cannot occur. To monitor the operation of this process the output 
indicates the cycle number at which the situation of exceeding 39 units occurred. 
It turned out that the maximal distance was exceeded up to ten times per hundred 
cycles for the 121-bead chain. 

I 
I 
I 

t 
20 

iv ~ )  
I / d ''F'l 

I 

X=-20 

I 
/OA 

I / I / /  

I/ 
2 

C BC~/. ,-OB ~ 
- - X  

"-20--"  

1 

I 
I 

X=20 

Fig. 4. More detailed schematic of the manner in which 
a bead is handled to simulate a reflecting barrier. 

822/I/I-4 
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UNWINDING PROGRAM 

THE FOLLOWING PROGRAM COMPUTES THE NUMBER OF WINDS OF A ROUSE-MODEL 
MACROMOLECULE ABOUT A CYLINDER, THE MODIFIED LANGEVIN EQUATION 
IS USED TO SIMULATE THE MOTION. SEE TEXT FOR FURTHER DETAILS , 

~IMENSION X (121+2 )+Y(121+2 )~R(121 ) .D I I 21 )+P I I21 ) t  
* S ( 1 2 1 ) , E ( 1 2 1 ) t T i 1 2 1 ) I V ( 1 2 ] )  

RNF(O)=Se-16,tRANF(Q) 
READ IO+B 

10 FORMAT (016~ 
CALL RANFSET(B) 
AAm,125 
READ 1T~ ( X I I . 1 ) ~ Y t I + l ) * I - I + 1 2 1 )  

17 FORWAT(2FIO,1) 
LIO-O 

2 I - 1 . 20000  
nO 3 J - I t 121+120  
THIS DO-LOOP COMPUTES THE NEW POSITIONS OF THE FIRST AND 
LAST SUB-MOLECULES, 
TF(J .EQ,1)~.5  
J1 -J+ l  SGO TO 6 
J ]mJ - I  
X ( J , 2 ) . R N F ( l l ) - A A m ( X ( J + I I - X ( J I + I I ) + X I J , 1 )  
Y ( J , 2 ) = R N F ( - 1 ) I A A ~ ( Y ( J ~ ] ) - Y ( J I + I ) ) + Y ( J , 1 )  $GO TO B 
rio 9 J -2 ,120  $J1-J -1  $J2-J+ l  
THIS LOOP COMPUTE5 THE NEW COORDINATES OF THE REST OF THE CHAIN, 
X I J ~ 2 1 - R N ~ { - 1 ) + X I J + I ) - A A ~ ( - X ( J I , 1 ) §  
Y ( J ~ 2 ) . R N r  
60 TO I~ 
nO ~1~ J-1 .121 
THE REFLECTING WALLED CYLINDER IS SIMULATED IN THIS DO-LOOP, 

11 IF (ABSF(X(J~2) I ,GT,~O. ,OR.ABSF(XIJ t2 ) ) .EQ.20. ,OR,  
�9 ABSF(Y(J .2 ) I ,GT.20 , ,OR,ABSFIY(J+~) ) ,EQ,2D,  ) 1 2 . 2 0 0  

200 I F ( X ( J ~ I ) , G T , 2 0 , , O R . X ( J . ] ) , E O .  2 0 . |  310.307 
30? IF (X (J+ I I , LT , -20 , ,OR*X(J+ I ) *EO* -2O* )30S~308  
30~ TF(Y(J+ l ) .GT,2O. .OR,Y(J .11eEQ.20 . )  300~309 
~I0  I F ( Y ( J , I } +  ( Y ( J ~ 2 ) - Y ( J + I ) I ~ i ~ O . - ( X | J , 1 ) ) ) / | X I J . 2 ) - X ( J , 1 ) ) ~ G T e ~ B . )  

e300.31~ 
~IZ I F { Y ( J ~ I ) +  ( Y I J . ? ) - Y ( J , I ) ) ~ I ? O , - I X ( J * I ) ) ) / ( X ( J ~ 2 ) - X ( J . i ) ) e L T + - 2 0 + )  

309+311 
~O~ T F ( Y ( J ~ I ) + ( ( Y ( J . 2 ) - Y ( J . I ) ] ~ I - 2 0 , - X I J ~ I ) ) ) / ( X | J , 2 ) - X ( J ~ I ) )  +GT. ?De 

) 300+316 
315 I ~ I Y I J + T I + I ( Y I J . 2 ) - Y I J ~ I ) t ~ I - 2 0 , - X ( J . 1 ) I } / I X ( J ~ 2 ) - X I J . 1 ) |  *LT*-20e 

)309,313 
NO0 Y|J~2I=AO,-A~SFIY(J+2) I  $ GO TO 12 

212 
22B 
226 
22? 
?OR 
20q 

301 

3ON V t J t = - t P ( J ) §  
30~ CONTINUE 

30q Y(J,2)--AO| ABSFIY(J ,2 | )  $ GO TO 12 
3 1 1 X t J I 2 ) - A O , -  ABSF iX IJ t2 ) |  SGO TO ]2  
313 X(J+2) - -40++ABSFIX(J I2) )  $ GO TO ]2 

17 IF (J .~O.1 )A lA t41~  
41~ J l " J - !  

t~ 111XIJ1,2) -XIJ t2) i * *~+IY/ I1 ,2) -YIJ ,21I t~2) ,LT, l~21. )416tAO8 
4OR GO TO 2 
t } t  CONTINUE 

? OO 1S J - I , 1 2 1  
X ( J t l ) - X r  

15 Y C J I I I - Y ( J I 2 I  
LIO'L lO+1 
1FIL10,EO,lOO)20212 

TIE FOLLOWING PART OF TIE PROGR~R COIltPUTES THE ANGLE BETWEEN BEADS 
J ANO J+] IN THE FoRM OF AN ARCTANGENT. 

202 DO 213 J-1o120 
203 R ( J ) = Y I J I l t  

D I J I s X ( J I [ )  
~03 P(J)mARCTAN(R(J)~D(JI) 
213 CONTINUE 
214 f'~ 225 J u l . 1 2 0  S J l "J+1  

S I J ) = Y I J I I 1 )  
E ( J ) - X I J I ~ 1 )  
TIJ)mARCTANISIJ) tEIJ))  
CONTINUE 
DO 208 J ' 1 . 1 2 0  
V ( J I - T ( J ) - P ( J )  i 
cONTTNUE 
iX) 304 Jml.120 
IF (A~SF~V(J) ) .GTt3e l~ I~g)  301t304 
IF I Y I J + l l , L T . O )  302~303 
V I J ) ' T ( J ) + ( ~ e i 3 , 1 4 1 S g - P ( J ) )  S GO TO 304 

SGO TO 304 
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TH E ANGLE SUMMATION OVER ALL REAOS IS PERFORNEO NEXT, 
$UN-O 
nO 228 J-1 .10 

2?5 SU~=$UM§ VtJ)  
ALPHAmSU~I(2.~3,14159I 
SUM~O 
~0 sO0 J - l i t 2 0  

500 SUM=SUM+V(J) 
kL[PH=SUM/(2,~, I4159t  
SUM=0 
nO 229 J=21.30 

229 $UM=SUM+V(J| 
~ETA=SUM/(2.~3,14159) 
SU~=0 
00 ~01 J-31.40 

501 SUM=SUM+V(J) 
DAL~D=SUH/12**3.14139) 
$UH=O 
~0 230 J=41.50 

230 SUM=SUM§ 
GA~A=SUM/12=e3,14159 ) 
SuN=O 
DO 302 JwSl*60 

502 $UM-SUM§ 
GkHEL=SUM/(2,~3.I4139) 
$UM-O 
00 231Ja61,70 

23] $U~-SUM+V(J) 
DELTA-SUMI(2.~,I4159t 
SU~O 
DO 303 J - ? l l 8 0  

50~ SUM=SUM+V(J) 
A~OURmSUM/(2.~3.141Sg! 
SU~-O 

OO 232 J-81.90 
232 SUM~SUN§ 

ERS~LON=SUMI(2,~,141Sg). 
SUM-O 
O0 ~04 J -g I , lO0  

504 SUN=SUM§ 
CRO~SsSU~/I2,e3,141~9} 
SUMeO 
O0 33~ J-100.110 
SUNmSUM§ 
CHTmSU~/(2.~3.141)9) 
SUH*0 
P)O SOs J~111~120 

~0~ SUM~SUMIVtJ} 
ALORSmSU~/12,~3,14159) 

X ~  ALPHA§ +CHI 
e+AL~PH+DALED+GAMEL+AMOUR§ 
~RINT I ,ALPHA,ALEPHoBETA~DALEbtGANNA~GAMEL~DELTA~AMOUR~ 

sE~STLONtCROIStCH[~ALO~$~X~ 
I FORMAT (IHO(I3F~*2)) 

PUNCMSO6*ALPHA~ALEPH~BETAeOALED~GA~'~NA*GA~EL*D[LTA~AHOUR~ 
~PS~LON~CROIS~CHT~ALO~S~X! 

506 FORMAT (1H0(13FS*2)) 
llO~O 

C&LL RAN~G~T ( C t '  
PUNCH 16, C 

16 FORMAT 10161 
PUNCH I O * | X ( J * I I * Y i J * ] I * J ~ I * I 2 | }  

~8 FORMAT (2F]O. | )  
[NO 

Fig. 5. The entire FORTRAN program. The new x and y coordinates of bead j m'e generated by 
the difference form of a Langevin equation of motion. X(J, 1) and X(J, 2) are the x coordinates 
of bead j at successive intervals of time. Y(J, 1) and 17(,/, 2) are the corresponding y coordinates. 
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Figure 5 shows the complete set of FORTRAN IV statements which were used on 
the UCSD CDC 3600 computer. This particular program involves 121 beads with 
20,000 impulses to each bead of the chain. The first set of statements is concerned 
with generation of  new coordinates making use of a random number function 
RNF (--1) which has been defined to produce evenly distributed random numbers 
between --8.0 and ~8 .0  (see above), aa  is the constant e fixed at 0.125. This is 
consistent with an r.m.s, distance between elements of 16 units by Eq. (8). 

The next do-loop (statement 414) first determines if any bead is within the 
excluded volume area. If it is not, then the distance to the preceding element is 
tested to see if it is equal to or greater than 40 units (a cylinder diameter). If  this 
distance is exceeded, the entire cycle is thrown out (statement following 415). If the 
bead lies within the excluded volume, then a series of operations performs the 
reflection operation. Statements 200, 307, and 308 determine from what direction 
the bead entered the volume. Statements 310, 312, 305, and 316 determine the 
intersection with the extensions of the sides of the square [see Fig. 4 and Eq. (19)]. 
This, in turn, allows an appropriate move to a new position given in statements 300, 
309, 311, and 313. 

The next portion of the program determines the angle between beads j and 
j § 1. This is done by computing the angle made with respect to the positive x axis 
in the x y  plane. (The ARCTAN routine can be replaced by a suitable power-series 
expansion if the routine is not available. However, to agree with the routine used 
here, the resultant angle must lie between 0 and 2rr radians.) The do-loop started 
at statement 209 corrects for those infrequent cases where bead j lies below the 
x axis a n d j  + 1 above the x axis, or vice versa. In these cases the arctangent calcula- 
tion must be corrected so as to give the acute rather than the obtuse angle. 

The final stage of the program sums over all the angles, in this case in twelve 
successive tiers, and divides by 2~r in order to compute the number of winds. The 
last random number C is recorded as output; this may then be used as the initial 
random number B in a subsequent run, if desired. 

5. R E S U L T S  A N D  D I S C U S S I O N  

Chains of 31, 61, 81, and 121 beads with three to twelve turns were allowed to 
unwind. The total number of winds and a breakdown into tiers were computed as 
functions of computer cycles. An example which summarizes the study is discussed 
below. 

5.1. 121-Bead M o d e l  

A 121-bead, 12-turn model of DNA with 16 units as the r.m.s, distance b serves 
as an example of the unwinding results (see Fig. 6). The total number of winds 
in each section of ten beads which corresponds to one initial turn ("tier") was 
computed as described above. Each result was then averaged over six independent 
computer runs. Each point is the running average over 1000 computer cycles. 
Specifically, ten successive values of the number of winds found at the end of every 
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Fig. 6. Direct output  o f  the computer  simulation (points) for a 121-bead chain with 12 initial 
winds, c~ = 0.125 and b = 16. The points  for the outer tier are the averages of  the results for tiers 1 
and 12, those of  the second tier are the averages of  tiers 2 and 11, and so on. Each point  is the running 
average over 1000 computer  cycles. The curves represent the analytical solution of  the tensile 
relaxation equat ion for a 121-bead chain with ~r = 0.087. Each curve gives the length divided by 
the initial length of  the appropriate  twelfth of  the chain. 

100 cycles were averaged together to give one point for every 1000 cycles. Because 
of the symmetry of the chain with respect to its midpoint, it was possible to average 
the number of winds of  tiers 1 and 12, 2 and 11, etc. 

A plot of  total winds v e r s u s  cycles is shown in Fig. 7. The similarity to tensile 
relaxation, as shown in Fig. 1, is remarkable. 

100  

80 . -  

60  

w(t) 

I I 

CYCLES x 10-3 

Fig. 7. Total  winds v e r s u s  t ime for the 121-bead model  as in Figure 6. Points: computer  simulation 
of  the Langevin equation.  Lower curve: tensile relaxation with cr = 0.125; upper  curve: tensile 
relaxation with adjusted relaxation times, ~ = 0.087. 
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The general features of these curves are similar to those found in runs with 
shorter chains. Runs for 31-, 61-, and 81-bead models were made, varying the number 
of  initial twists about the cylinder for a constant number of beads. The results of 
this study showed that the relaxation time appeared to be independent of the number 
of  twists for a given model but dependent on the parameter a in a fashion very 
similar to that seen in tensile relaxation (Table I). These similarities suggested the 
model discussed below. 

5.2 .  T e n s i l e  R e l a x a t i o n  as a M o d e l  f o r  U n w i n d i n g  

The equation for the relaxation of a chain initially linearly stretched is given 
by Eq. (15) with the relaxation times of (16). This equation for a 121-bead chain 
with cr = 0.125 is plotted as the lower curve in Fig. 7, taking the initial value to be 12 
as if the length were the number of winds. The longest relaxation time here is given 
by Eq. (16) with k equal to unity, and is 11,862 cycles. If the curve is replotted with 
the change of substituting 17,600 cycles for this relaxation time, corresponding 
to cr = 0.087, and changing the other relaxation times by the same factor, we obtain 
the upper curve in Fig. 7, which is seen to be a remarkably good fit to the points 
representing the Langevin results. 

The tensile result may also be compared to the detailed results of Fig. 6 if it is 
put in an appropriate form for comparison. From the results in Section 3 we may 
obtain the following result for the mean x coordinate of a bead, j, in a chain under- 
going tensile relaxation: 

~x(j ,  t ) )  - -  4~x( j ,  0)) ~ (-- 1) 11~-1~/2 krc(2j --  N )  exp ( I t ,  (20) 

Integration over each of six equal parts f r o m j  = 0 t o j  = N/2,  performing a running 
average over ten consecutive values of t, and summing over one hundred values 
of k puts Eq. (20) in suitable form for comparison to the Langevin results. The 
solid curves in Fig. 6 show the comparison, using 17,600 for ~-1'. Again the agreement 
of  the two sets of  results is noteworthy. 

The molecular-weight dependence of the tensile relaxation times is second order. 
The molecular-weight dependence of the Langevin helical relaxation times is compared 
in Table II. The agreement with the tensile times is very close with the shorter chains, 
but there is a tendency for the helical times to become greater with the larger chains. 

Table II. Observed Relaxation Times for a Series of Helical Chains Compared with the 
Corresponding Theoretical Relaxation Times of the Tensile Result (Eq. (16)) with ~ = 0.t25 

N § 1 ~'z" tensile (theoretical) ~- computer (helical) 

31 780 9234-230 
61 3,015 3,2704-280 
8] 5,300 6,600-t-425 

121 11,862 17,6004- 530 
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5.3. Discussion 

In Crothers'  modet TM unwinding is considered to be a diffusion process; that is, 
there is a migration of twist outward from the central portions of  the macromolecule. 
A one-dimensional diffusion equation analogous to the equation for temperature 
diffusion in a rod was derived. The solution to the diffusion equation for complete 
unwinding of D N A  is 

c o  

v(x.~ t) 4v~ ~ ( -  1)~' (2n + 1) 7rx 
~- rr =0 2 n + ~ C ~  2L ] e x p [  - D(2n-]-l)2~v~t4L 2 ] (21) 

where v is the number of  winds per unit length, v 0 is the initial (constant) value of v, 
x is the linear distance from the center of  the molecule, 2L is the total length, D is 
the rotational diffusion constant for the helix, and t is the time. Equation (21) is 
identical in form to our equation (20), and may be made to agree exactly with the 
results in Figs. 6 and 7 by a proper choice of  the parameter  D. Thus the agreement 
found above between Langevin helical results and the tensile model can be 
reinterpreted as an agreement between the same results and Crothers' model. The 
modest discrepancies in the cases of  the longer chains would then represent a 
change of the twist diffusion constant D with molecular weight. 

The present treatment has been extended to include strands with an adsorpt ion 
interaction energy. (13,14) The present analytical results must be appropriately 
modified. 
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